Attempted synthesis of 1-pheny-1, 2-cyclohexadiene and Wurtz-like condensation products in the reaction of 1-(2,3-dibromocyclohex-1-en-1-yl) benzene with zinc
 Mustafa Ceylan* and Yakup Budak
 Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpașa University, 60250 Tokat, Türkïye

The thermal rearrangement of 8 at $150^{\circ} \mathrm{C}$ and $180^{\circ} \mathrm{C}$ gave 9 and 10 , respectively. The reaction of 1-(2,3-dibromocy-clohex-1-en-1-yl)benzene 9 with activated zinc gave Wurtz-like dimeric products $\mathbf{3}$ and $\mathbf{4}$ instead of expected allene 2.

Keywords: 1-phenyl-1, 2-cyclohexadiene, 1-(2,3-dibromocyclohex-1-yl)benzene, zinc

The chemistry of strained cyclic allenes is of considerable interest both for preparative ${ }^{1}$ and theoretical ${ }^{2}$ organic chemistry. The first attempts to synthesise strained cyclic allenes were reported by Favorski. ${ }^{3}$ The next pioneering work on strained allenes was carried out by Ball and Landor who successfully synthesised 1,2-cycloheptadiene and 1,2-cyclooctadiene. ${ }^{4}$ Both of these readily dimerise and were not isolable. However, Balct and Jones who isolated optically active cycloadducts by two different routes provided evidence for chirality in 1,2-cyclohexadiene and 1,2 -cycloheptadiene. ${ }^{5}$ Since this time, numerous strained cyclic allenes have been described, either as putative reaction intermediates or isolable substances. ${ }^{6}$ Recently, we have reported the synthesis of an allene unit in six and seven membered rings by fluroide ion-promoted elimination of β-halogenosilane. ${ }^{7}$

During the last years, however, there has been renewed interest in the study of synthesis of substituted cyclic allenes. Tolbert, ${ }^{8}$ accomplished the synthesis of 1-phenyl-1,2cyclohexadiene 2 via photo elimination from 1-chloro-2phenylcyclohexene. The zinc-catalysed elimination is one of the methods used for the synthesis of cyclic allenes. ${ }^{9}$

1

2

4

In addition, it is known that the reaction of 2,3-dihalocycloalkenes with zinc can give Wurtz-like condensation products. Previously, Balct, ${ }^{10}$ obtained the two Wurtz-like condensation products from the reaction of 2,3-dibromo-6,7-benzobicyclo[3.2.1]octa-3,6-diene with zinc. Recently, we have reported ${ }^{11}$ synthesis of Wurtz-like dimeric products from the treatment of five, six and seven membered 2,3dibromocyloalkenes with zinc. In this paper, we have applied zinc-catalysed elimination to the dibromo compound 9 a reaction which resulted in the formation of the Wurtz-like products 3 and 4.

By our approach, we envisaged that zinc mediated elimination from 9 could give allene 2. To synthesise 9 we used cyclopentanone 5 as a starting material. Reaction of $\mathbf{5}$ with phenyl-magnesium bromide ${ }^{12}$ followed by dehydration ${ }^{12}$ with 4-toluenesulfonic acid ($p-\mathrm{TsOH}$) to afford alkene 7.

[^0]

Scheme 1 Regents and conditions: (i) $\mathrm{PhmgBr}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}$; (ii) p-TsOH, benzene; (iii) t-BuOK, CHBr_{3}, n-Hexane.

Dibromocarbene addition ${ }^{13}$ to 7 gave the adduct product 8 (Scheme 1).
The thermal rearrangement ${ }^{14}$ of 8 at $150{ }^{\circ} \mathrm{C}$ and $180^{\circ} \mathrm{C}$ resulted in the formation of dibromoalkene 9 (74\%) and biphenyl $\mathbf{1 0}(88 \%)$ as the sole isolable products, respectively. In addition, it was observed that compound 9 was converted to 10 with the thermolysis of 9 at $180^{\circ} \mathrm{C}$. Compound 9 was characterised by spectroscopic methods and chemical transformation. The treatment of 9 with aqueous silver nitrate gave alcohol 11 (Scheme 2).

In the present work, we tried to use the zinc mediated elimination method for generating the strained phenyl substituted cyclic allene 2 . The reaction of $\mathbf{9}$ with activated zinc in the THF at $65^{\circ} \mathrm{C}$ gave $\mathbf{3}$ and $\mathbf{4}$ in a combined yield of 80%. Not even a trace of the expected allene $\mathbf{2}$ was detected in this reaction (Scheme 3).

The structures of $\mathbf{3}$ and $\mathbf{4}$ were determined on the basis of spectral data. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectral patterns of $\mathbf{3}$ and 4 are very similar to each other and indicate that they are stereoisomers. On the other hand, a 10 line ${ }^{13} \mathrm{C}$-NMR spectrum is in good agreement with the structures of $\mathbf{3}$ and 4, which posses a symmetry element. From all of these spectroscopic findings, we conclude that $\mathbf{3}$ and $\mathbf{4}$ are diastereoisomers of each other with two stereocenters at the points of attachment of two rings.
The formation of $\mathbf{3}$ and $\mathbf{4}$ can be reasonably explained by the intermediacy of the anion $\mathbf{1 2}$, which is formed by the initial

Scheme 2 Regents and conditions: (i) $150^{\circ} \mathrm{C}$, (ii) $180^{\circ} \mathrm{C}$, (iii) acetone $/ \mathrm{H}_{2} \mathrm{O}(9: 1), \mathrm{AgNO}_{3}, 30^{\circ} \mathrm{C}$.

Scheme 3 Reagents and conditions: (i) $\mathrm{Zn}, \mathrm{I}_{2}, 65^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

reduction of 9 with zinc. Subsequent displacement of the allylic bromine atom in $\mathbf{9}$ by the formed anion $\mathbf{1 2}$ leads to the Wurtz-type condensation products $\mathbf{3}$ and $\mathbf{4}$ (Scheme 4).
In conclusion, the thermal rearrangement of $\mathbf{8}$ at $150^{\circ} \mathrm{C}$ and $180^{\circ} \mathrm{C}$ resulted in the formation of dibromoalkene 9 (74\%) and biphenyl $\mathbf{1 0}$ (88%) as the sole isolable products, respectively. Zinc-promoted reaction of 9 gave the Wurtz-like dimeric products $\mathbf{3}$ and $\mathbf{4}$ instead of the expected allene $\mathbf{2}$ or some derivatives of $\mathbf{2}$.

Experimental

6,6-Dibromo-1-phenyl bicyclo [3.1.0] hexane 8: To a stirred solution of $7(4 \mathrm{~g}, 27.6 \mathrm{mmol})$, and potassium t-butoxide $(6.33 \mathrm{~g}, 55.6 \mathrm{mmol})$ in $50 \mathrm{ml} n$-hexane was added to a solution of $\mathrm{CHBr}_{3}(14.0 \mathrm{~g}, 55.6$ mmol) in $50 \mathrm{ml} n$-hexane at $0^{\circ} \mathrm{C}$ for 1 h . Stirring was continued overnight at room temperature. The reaction mixture was extracted with n-hexane $(3 \times 100 \mathrm{ml})$. The combined organic extracts were washed with water $(3 \times 100 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave $8(5.6 \mathrm{~g}, 67 \%)$ as a colourless liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.25(\mathrm{~m}, 5 \mathrm{H}), 2.62(\mathrm{t}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}) 2.25(\mathrm{~m}$, $2 \mathrm{H}), 1.86(1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=143.21$, 131.52 (2C), $129.25,114.12$ (2C), 51.92, 45.23, 40.04, 32.52, 28.32, 26.84.

1-(2,3-Dibromocyclohex-1-en-1-yl) benzene 9: Compound 8 (1.17 $\mathrm{g}, 3.69 \mathrm{mmol}$) was heated at $150^{\circ} \mathrm{C}$ for 3 h . The crude product, filtered through a short silica gel column with CCl_{4}. Evaporation of the solvent gave $9(0.9 \mathrm{~g}, 74 \%)$ as a colourless liquid (${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.32(\mathrm{~m}, 5 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H})$, $1.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) \delta=144.27,144.07$, 130.16 (2C), 129.66, 129.40 (2C), 127.82, 58.04, 36.05, 35.88, 20.18 IR (liquid) 3050, 3020, 2950, 1634, 1490, 1440, 1186, 950, 755, 694, 540. Anal calc. for C12H12Br2 (316.0348) C, 45.60; H, 3.82. Found: C, 45.53 ; H, 3.64.

Biphenyl 10: Compound $8(0.2 \mathrm{~g}, 0.63 \mathrm{mmol})$ was heated at $180^{\circ} \mathrm{C}$ for 3 h . The crude product, filtered through a short silica gel column with CCl_{4}. Removal of the solvent gave $\mathbf{1 0}(0.085 \mathrm{~g}, 85 \%)$ as a white needles solid (m.p. $68-71^{\circ} \mathrm{C}$; Lit. m.p. $70^{\circ} \mathrm{C}$) ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.72(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=143.36,130.89,129.37,129.28$.

2-Bromo-3-phenylcyclohex-2-en-1-o1 11: To a solution of $9(0.3 \mathrm{~g}$, $0.95 \mathrm{mmol})$ in 5 ml acetone was added solution of $\mathrm{AgNo}_{3}(0.16 \mathrm{~g}, 0.95$ mmol) in 5 ml acetone $/ \mathrm{H}_{2} \mathrm{O}(9: 1)$. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 0.5 h, filtered, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave $\mathbf{1 1}$ $(0.17 \mathrm{~g}, 70 \%)$ as a colourless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{2}\right) \delta=1.44 .28,143.68,130.22(2 \mathrm{C}), 129,63$ (2C), 129.47, 127.91, 73.46, 36.53, 33.76, 20.59. IR (liquid), 3560, 3053, 3021, 2938, 2868, 1602, 1486, 1442, 1071, 1060, 980, 790, 694.

Reaction of 1-(2,3-dibromocyclohex-1-en-1-yl) benzene 9 with zinc: To a solution of $9(0.3 \mathrm{~g}, 0.9 \mathrm{mmol})$ in 15 ml of anhydrous THF was added Zn dust $(0.08 \mathrm{~g}, 0.9 \mathrm{mmol})$ and a small amount of I_{2}. The reaction mixture was heated at a bath temperature of $65^{\circ} \mathrm{C}$ for 16 h . After the mixture was cooled to r.t., the insoluble materials were separated by filtration. The solvent was removed, and the residue was crystallized from n-hexane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1)\right.$, and $\mathbf{3}$ and $\mathbf{4}$ were separated in the ratio of $1: 1$ (180 mg , combined yield 80%). One of the products is white needles solid ($\mathbf{3}$ or $\mathbf{4}$) (m.p. 188-189 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.33(\mathrm{~m}, 10 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 2.42,(\mathrm{~m}, 4 \mathrm{H}), 1.98$ $(\mathrm{m}, 4 \mathrm{H}), 1.76(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=146.09(2 \mathrm{C})$, 143.73 (2C), 130.19 (4C), 129.05 (2C), $127.00{ }^{3}(2 \mathrm{C}), 48.14$ (2C), 36.92 (2C), 26.89 (2C), 24.11 (2C). IR (KBr) 3025, 2930, 2860, 1680, 1630, 1590, 1480, 1440, 780, 720, 690, 535. Anal calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Br}_{2}$ (472.25) C, 61.03; H, 5.12. Found: C, 60.92; H, 4.98.
The other product is colourless liquid ($\mathbf{3}$ or $\mathbf{4}$) $1 \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.35(\mathrm{~m}, 10 \mathrm{H}), 3,24(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 4 \mathrm{H}), 2.12-1.77(\mathrm{~m}$, $8 \mathrm{H}) .{ }^{33} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=146.32(2 \mathrm{C}), 142.33$ (2C), 130.14 (4C), 129.84 (4C), 128.89 (2C), 49.68 (2C), 36.67 (2C), 31.37 (2C), 24.33 (2C). IR (liquid) 3021, 2955, 1685, 1634, 1595, 1480, 1442, 789, 722, 694, 534. Anal calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Br}_{2}$ (472.25) C, 61.03; H, 5.12. Found C, 60.94; H, 4.96.

The authors are indebted to the department of chemistry (Gaziosmanpașa University) for financial support of this work (Grant Nr. 1998/9 University Research Found). Furthermore, we thank Prof. Dr Yaşar Sütbeyaz and assistant Cavit Kazaz (Atatürk University) for 200 MHz NMR.

Received 18 January 2001; accepted 24 May 2001 Paper 01/706

References

1 (a) B. Lam and R.P. Johnson, J. Am. Chem. Soc., 1983, 105, 7479; (b) R.O Angus, M.V. Schmidt and R.P. Johnson, J. Am. Chem. Soc., 1985, 107, 532.
2 J. Greenberg and J.F. Libman, Strained Organic Molecular, Academic Press, New York, 1978.
3 (a) A.E. Favorski, J. Gen. Chem. USSR (Engl. Transl.) 1936, 6, 720; (b) A.E. Favorski, Soc. Chem. Fr., 1936, 5, 1727.
4 (a) W.J. Ball and S.R. Landor, Proc. Chem. Soc. London, 1961, 143; (b) W.J. Ball and S.R. Landor, J. Chem. Soc., 1962, 2298.
5 (a) M. Balct and W.M. Jones, J. Am. Chem. Soc., 1980, 102, 7607; (b) M. Balci and W.M. Jones, J. Am. Chem. Soc., 1981, 103, 2874.
6 D.R. Taylor, Chem. Rev., 1967, 67, 317; (b) S.R. Landor, Ed. The Chemistry of the Allenes, Academic Press, New York, 1982, vol. 1-3; (c) D.J. Pasto, Tetrahedron, 1984, 40, 2805; (d) H.F. Schuster, G.M. Coppola, Allenes in Organic Synthesis, Wiley; New York, 1984; (e) R.P Johnson, Chem. Rev., 1989, 89, 1111.
7 (a) Y. Sütbeyaz, M. Ceylan, H. Seçen, J. Chem. Research (M)., 1993, 2189; (b) Y. Sütbeyaz, M. Ceylan and H. Seçen, J. Chem. Research (M)., 1993, 293.
8 L.M. Tolbert, MD.N. Islam, R.P. Johnson, P.M. Loislli and W.C. Shakespeare, J. Am. Chem. Soc., 1990, 112, 6416.
9 (a) T. Negi, T. Kareda, H. Mizuno, Y. Sakata and S. Misumi, Bull Chem. Soc. Jpn., 1974, 47, 2398; (b) H.N. Cripps, E.F. Kiefer, Org. Synth., 1962, 42, 12.
10 Y. Taskesenligil, F. Tümer, M. Balcı, Tr. J. Chem, 1995, 19, 305.
11 (a) M. Ceylan, H. Seçen, Y. Sütbeyaz, J. Chem. Research (M)., 1997, 70; (b) M. Ceylan, H. Seçen, Y. Sütbeyaz, J. Chem. Research (S)., 1997, 501.
12 M. Clifford, M.S. Utermoehlen and E. Roland, lehr. J. Org. Chem., 1987, 52, 5574.
13 G. Witting and P. Fritze, Ann. Chem., 1968, 711, 82.
14 J. Sonnenberg, S. Winstein, J. Org. Chem, 1962, 27, 748.

[^0]: * To receive any correspondence. E-mail: mceylan@gop.edu.tr
 ${ }^{\dagger}$ This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

